On the Use of Relative Likelihood Ratios in Statistical Inference
نویسندگان
چکیده
We ask the question, “How good are parameter estimates?,” and offer criticism of confidence intervals as an answer. Instead we suggest the engineering community adopt a little known idea, that of defining plausible intervals from the relative likelihood ratio. Plausible intervals answer the question, “What range of values could plausibly have given rise to the data we have seen?” We develop a simple theorem for computing plausible intervals for a wide variety of common distributions, including the Gaussian, exponential, and Poisson, among others.
منابع مشابه
Accurate Inference for the Mean of the Poisson-Exponential Distribution
Although the random sum distribution has been well-studied in probability theory, inference for the mean of such distribution is very limited in the literature. In this paper, two approaches are proposed to obtain inference for the mean of the Poisson-Exponential distribution. Both proposed approaches require the log-likelihood function of the Poisson-Exponential distribution, but the exact for...
متن کاملStatistical Inference in Autoregressive Models with Non-negative Residuals
Normal residual is one of the usual assumptions of autoregressive models but in practice sometimes we are faced with non-negative residuals case. In this paper we consider some autoregressive models with non-negative residuals as competing models and we have derived the maximum likelihood estimators of parameters based on the modified approach and EM algorithm for the competing models. Also,...
متن کاملInference for the Type-II Generalized Logistic Distribution with Progressive Hybrid Censoring
This article presents the analysis of the Type-II hybrid progressively censored data when the lifetime distributions of the items follow Type-II generalized logistic distribution. Maximum likelihood estimators (MLEs) are investigated for estimating the location and scale parameters. It is observed that the MLEs can not be obtained in explicit forms. We provide the approximate maximum likelihood...
متن کاملAsymptotic Efficiencies of the MLE Based on Bivariate Record Values from Bivariate Normal Distribution
Abstract. Maximum likelihood (ML) estimation based on bivariate record data is considered as the general inference problem. Assume that the process of observing k records is repeated m times, independently. The asymptotic properties including consistency and asymptotic normality of the Maximum Likelihood (ML) estimates of parameters of the underlying distribution is then established, when m is ...
متن کاملStatistical Inference for the Lomax Distribution under Progressively Type-II Censoring with Binomial Removal
This paper considers parameter estimations in Lomax distribution under progressive type-II censoring with random removals, assuming that the number of units removed at each failure time has a binomial distribution. The maximum likelihood estimators (MLEs) are derived using the expectation-maximization (EM) algorithm. The Bayes estimates of the parameters are obtained using both the squared erro...
متن کامل